3.419 \(\int \cos ^2(c+d x) (a+b \cos (c+d x))^2 \, dx\)

Optimal. Leaf size=101 \[ \frac {\left (4 a^2+3 b^2\right ) \sin (c+d x) \cos (c+d x)}{8 d}+\frac {1}{8} x \left (4 a^2+3 b^2\right )-\frac {2 a b \sin ^3(c+d x)}{3 d}+\frac {2 a b \sin (c+d x)}{d}+\frac {b^2 \sin (c+d x) \cos ^3(c+d x)}{4 d} \]

[Out]

1/8*(4*a^2+3*b^2)*x+2*a*b*sin(d*x+c)/d+1/8*(4*a^2+3*b^2)*cos(d*x+c)*sin(d*x+c)/d+1/4*b^2*cos(d*x+c)^3*sin(d*x+
c)/d-2/3*a*b*sin(d*x+c)^3/d

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 101, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {2789, 2633, 3014, 2635, 8} \[ \frac {\left (4 a^2+3 b^2\right ) \sin (c+d x) \cos (c+d x)}{8 d}+\frac {1}{8} x \left (4 a^2+3 b^2\right )-\frac {2 a b \sin ^3(c+d x)}{3 d}+\frac {2 a b \sin (c+d x)}{d}+\frac {b^2 \sin (c+d x) \cos ^3(c+d x)}{4 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^2*(a + b*Cos[c + d*x])^2,x]

[Out]

((4*a^2 + 3*b^2)*x)/8 + (2*a*b*Sin[c + d*x])/d + ((4*a^2 + 3*b^2)*Cos[c + d*x]*Sin[c + d*x])/(8*d) + (b^2*Cos[
c + d*x]^3*Sin[c + d*x])/(4*d) - (2*a*b*Sin[c + d*x]^3)/(3*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2633

Int[sin[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[Expand[(1 - x^2)^((n - 1)/2), x], x], x
, Cos[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[(n - 1)/2, 0]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2789

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Dist[(2*c*d)/b
, Int[(b*Sin[e + f*x])^(m + 1), x], x] + Int[(b*Sin[e + f*x])^m*(c^2 + d^2*Sin[e + f*x]^2), x] /; FreeQ[{b, c,
 d, e, f, m}, x]

Rule 3014

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[
e + f*x]*(b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[(A*(m + 2) + C*(m + 1))/(m + 2), Int[(b*Sin[e + f*
x])^m, x], x] /; FreeQ[{b, e, f, A, C, m}, x] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \cos ^2(c+d x) (a+b \cos (c+d x))^2 \, dx &=(2 a b) \int \cos ^3(c+d x) \, dx+\int \cos ^2(c+d x) \left (a^2+b^2 \cos ^2(c+d x)\right ) \, dx\\ &=\frac {b^2 \cos ^3(c+d x) \sin (c+d x)}{4 d}+\frac {1}{4} \left (4 a^2+3 b^2\right ) \int \cos ^2(c+d x) \, dx-\frac {(2 a b) \operatorname {Subst}\left (\int \left (1-x^2\right ) \, dx,x,-\sin (c+d x)\right )}{d}\\ &=\frac {2 a b \sin (c+d x)}{d}+\frac {\left (4 a^2+3 b^2\right ) \cos (c+d x) \sin (c+d x)}{8 d}+\frac {b^2 \cos ^3(c+d x) \sin (c+d x)}{4 d}-\frac {2 a b \sin ^3(c+d x)}{3 d}+\frac {1}{8} \left (4 a^2+3 b^2\right ) \int 1 \, dx\\ &=\frac {1}{8} \left (4 a^2+3 b^2\right ) x+\frac {2 a b \sin (c+d x)}{d}+\frac {\left (4 a^2+3 b^2\right ) \cos (c+d x) \sin (c+d x)}{8 d}+\frac {b^2 \cos ^3(c+d x) \sin (c+d x)}{4 d}-\frac {2 a b \sin ^3(c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.16, size = 86, normalized size = 0.85 \[ \frac {24 \left (a^2+b^2\right ) \sin (2 (c+d x))+48 a^2 c+48 a^2 d x-64 a b \sin ^3(c+d x)+192 a b \sin (c+d x)+3 b^2 \sin (4 (c+d x))+36 b^2 c+36 b^2 d x}{96 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^2*(a + b*Cos[c + d*x])^2,x]

[Out]

(48*a^2*c + 36*b^2*c + 48*a^2*d*x + 36*b^2*d*x + 192*a*b*Sin[c + d*x] - 64*a*b*Sin[c + d*x]^3 + 24*(a^2 + b^2)
*Sin[2*(c + d*x)] + 3*b^2*Sin[4*(c + d*x)])/(96*d)

________________________________________________________________________________________

fricas [A]  time = 0.82, size = 77, normalized size = 0.76 \[ \frac {3 \, {\left (4 \, a^{2} + 3 \, b^{2}\right )} d x + {\left (6 \, b^{2} \cos \left (d x + c\right )^{3} + 16 \, a b \cos \left (d x + c\right )^{2} + 32 \, a b + 3 \, {\left (4 \, a^{2} + 3 \, b^{2}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{24 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+b*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

1/24*(3*(4*a^2 + 3*b^2)*d*x + (6*b^2*cos(d*x + c)^3 + 16*a*b*cos(d*x + c)^2 + 32*a*b + 3*(4*a^2 + 3*b^2)*cos(d
*x + c))*sin(d*x + c))/d

________________________________________________________________________________________

giac [A]  time = 0.46, size = 82, normalized size = 0.81 \[ \frac {1}{8} \, {\left (4 \, a^{2} + 3 \, b^{2}\right )} x + \frac {b^{2} \sin \left (4 \, d x + 4 \, c\right )}{32 \, d} + \frac {a b \sin \left (3 \, d x + 3 \, c\right )}{6 \, d} + \frac {3 \, a b \sin \left (d x + c\right )}{2 \, d} + \frac {{\left (a^{2} + b^{2}\right )} \sin \left (2 \, d x + 2 \, c\right )}{4 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+b*cos(d*x+c))^2,x, algorithm="giac")

[Out]

1/8*(4*a^2 + 3*b^2)*x + 1/32*b^2*sin(4*d*x + 4*c)/d + 1/6*a*b*sin(3*d*x + 3*c)/d + 3/2*a*b*sin(d*x + c)/d + 1/
4*(a^2 + b^2)*sin(2*d*x + 2*c)/d

________________________________________________________________________________________

maple [A]  time = 0.05, size = 89, normalized size = 0.88 \[ \frac {b^{2} \left (\frac {\left (\cos ^{3}\left (d x +c \right )+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{4}+\frac {3 d x}{8}+\frac {3 c}{8}\right )+\frac {2 a b \left (2+\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )}{3}+a^{2} \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*(a+b*cos(d*x+c))^2,x)

[Out]

1/d*(b^2*(1/4*(cos(d*x+c)^3+3/2*cos(d*x+c))*sin(d*x+c)+3/8*d*x+3/8*c)+2/3*a*b*(2+cos(d*x+c)^2)*sin(d*x+c)+a^2*
(1/2*cos(d*x+c)*sin(d*x+c)+1/2*d*x+1/2*c))

________________________________________________________________________________________

maxima [A]  time = 0.83, size = 82, normalized size = 0.81 \[ \frac {24 \, {\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} a^{2} - 64 \, {\left (\sin \left (d x + c\right )^{3} - 3 \, \sin \left (d x + c\right )\right )} a b + 3 \, {\left (12 \, d x + 12 \, c + \sin \left (4 \, d x + 4 \, c\right ) + 8 \, \sin \left (2 \, d x + 2 \, c\right )\right )} b^{2}}{96 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+b*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

1/96*(24*(2*d*x + 2*c + sin(2*d*x + 2*c))*a^2 - 64*(sin(d*x + c)^3 - 3*sin(d*x + c))*a*b + 3*(12*d*x + 12*c +
sin(4*d*x + 4*c) + 8*sin(2*d*x + 2*c))*b^2)/d

________________________________________________________________________________________

mupad [B]  time = 0.60, size = 93, normalized size = 0.92 \[ \frac {a^2\,x}{2}+\frac {3\,b^2\,x}{8}+\frac {a^2\,\sin \left (2\,c+2\,d\,x\right )}{4\,d}+\frac {b^2\,\sin \left (2\,c+2\,d\,x\right )}{4\,d}+\frac {b^2\,\sin \left (4\,c+4\,d\,x\right )}{32\,d}+\frac {3\,a\,b\,\sin \left (c+d\,x\right )}{2\,d}+\frac {a\,b\,\sin \left (3\,c+3\,d\,x\right )}{6\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^2*(a + b*cos(c + d*x))^2,x)

[Out]

(a^2*x)/2 + (3*b^2*x)/8 + (a^2*sin(2*c + 2*d*x))/(4*d) + (b^2*sin(2*c + 2*d*x))/(4*d) + (b^2*sin(4*c + 4*d*x))
/(32*d) + (3*a*b*sin(c + d*x))/(2*d) + (a*b*sin(3*c + 3*d*x))/(6*d)

________________________________________________________________________________________

sympy [A]  time = 1.06, size = 211, normalized size = 2.09 \[ \begin {cases} \frac {a^{2} x \sin ^{2}{\left (c + d x \right )}}{2} + \frac {a^{2} x \cos ^{2}{\left (c + d x \right )}}{2} + \frac {a^{2} \sin {\left (c + d x \right )} \cos {\left (c + d x \right )}}{2 d} + \frac {4 a b \sin ^{3}{\left (c + d x \right )}}{3 d} + \frac {2 a b \sin {\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{d} + \frac {3 b^{2} x \sin ^{4}{\left (c + d x \right )}}{8} + \frac {3 b^{2} x \sin ^{2}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{4} + \frac {3 b^{2} x \cos ^{4}{\left (c + d x \right )}}{8} + \frac {3 b^{2} \sin ^{3}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{8 d} + \frac {5 b^{2} \sin {\left (c + d x \right )} \cos ^{3}{\left (c + d x \right )}}{8 d} & \text {for}\: d \neq 0 \\x \left (a + b \cos {\relax (c )}\right )^{2} \cos ^{2}{\relax (c )} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*(a+b*cos(d*x+c))**2,x)

[Out]

Piecewise((a**2*x*sin(c + d*x)**2/2 + a**2*x*cos(c + d*x)**2/2 + a**2*sin(c + d*x)*cos(c + d*x)/(2*d) + 4*a*b*
sin(c + d*x)**3/(3*d) + 2*a*b*sin(c + d*x)*cos(c + d*x)**2/d + 3*b**2*x*sin(c + d*x)**4/8 + 3*b**2*x*sin(c + d
*x)**2*cos(c + d*x)**2/4 + 3*b**2*x*cos(c + d*x)**4/8 + 3*b**2*sin(c + d*x)**3*cos(c + d*x)/(8*d) + 5*b**2*sin
(c + d*x)*cos(c + d*x)**3/(8*d), Ne(d, 0)), (x*(a + b*cos(c))**2*cos(c)**2, True))

________________________________________________________________________________________